
ENCAPSULATED MULTI-METHODS AND
MULTIPLE DISPATCHING IN OBJECT
ORIENTED HIGH LEVEL PETRI NETS

Marius Brezovan ∗

∗University of Craiova, Software Engineering Department

Abstract: In recent years, several proposals tried to associate object-oriented
formalisms and Petri nets into a single framework which combine the expressive
power of both approaches. This paper presents a Petri net formalism called
Object Oriented High Level Petri Nets (OOHLPN), and the implementation of
encapsulated multi-methods and multiple dispatching in this formalism. The
encapsulated multi-methods and multiple dispatching are important feature of
OOHLPNs, in addition to separating the inheritance and subtyping hierarchies.

Keywords: Petri nets, object-oriented Petri nets, object-oriented languages,
formal methods

1. INTRODUCTION

In order to specify large systems, many high level
Petri nets formalisms has been developed, such as
Predicate/Transition Nets (Genrich, 1987), Col-
ored Petri Nets (Jensen, 1992) and Algebraic
Nets (Reisig, 1991). During the last years, there
have been many proposal of introducing object-
oriented features into the frame of Petri nets
to increase the power for modelling concurrent
and distributed systems: PROT nets (Baldassari
and Bruno, 1988), OBJSA nets (Battiston et
al., 1988), CO-OPN (Biberstein et al., 2001), Co-
operative Nets (Bastide et al., 1993), LOOPN
language (Lakos, 1994).

This paper presents a new formalism called Ob-
ject Oriented High Level Petri Nets (OOHLPN) ,
which is based on the standard of High Level Petri
Nets and object-oriented notions and methodolo-
gies.

In the first part of paper, the main notions con-
cerning the OOHLPN formalism are presented.
The second part of the paper describes the im-
plementation of two important notions in this

formalism: the encapsulated multi-methods, and
multiple dispatching mechanism.

2. OBJECT ORIENTED HIGH LEVEL PETRI
NETS

Because because subtyping inheritance are or-
thogonal mechanisms, concerned with the manip-
ulation of types and implementations, respectively
(Cook et al., 1990; Taivalsaari, 1996), one of main
feature of the OOHLPN formalism is the separa-
tion of the class notion into two distinct elements:

• An interface, which is used to define an
object type;

• An implementation module, which is used to
specify an object type implementation.

Due to this separation, Object Oriented High
Level Petri Nets are defined in three different
stages:

• definition of object types and interfaces;
• definition of implementation modules,
• definition of the entire collection of ob-

ject types and modules, which represent an
OOHLPN.



Throughout this paper, we assume a universe U ,
which includes several disjoints sets:

U = SORT ∪OID ∪METH

where SORT is the set of all sorts, OID is the set
of all identifiers associated to objects, and METH
is the set of public method names of object types.
The set of sorts, SORT , is partitioned in three
disjoint sets, SORTD, SORTOb and SORTRef ,
corresponding to the names of non object-oriented
data types, the names of object types and the
names of reference types respectively.

In order to specify the methods of objects, the set
METH is considered as a sorted set:

(METHĉw,s)ĉ∈SORTRef ,w∈SORT∗,s∈SORT∪{ε}

For each method name m ∈ METHĉw,s, ĉ repre-
sents the reference type to the object containing
the method, w is the sequence of sorts represent-
ing the input values, and s is the sort of the
returned value.

An encapsulated multi-method is an overloaded
method associated with an object type, which
contains several methods (branches) having the
same name. Let c be an object type. An encapsu-
lated multi-method of c with n branches is a pair
(m, t), where:

(a) m ∈ ⋂n
i=1 METHĉwi,si is the name of the

multi-method, with w1, . . . , wn ∈ SORT ∗

and s1, . . . , sn ∈ SORT ∪ {ε};
(b) t = {ĉw1 → s1, . . . , ĉwn → sn} represents its

type.

where w → s, with w = s1 . . . sn, represents a
function type, having input values of sorts s1 . . . sn

and output value of sort s. The set of all possible
encapsulated multi-methods of c is denoted by
MMETH(c)

Definition 2.1. An interface, Intf , defining an
object type c is a tuple

Intf = (c,≤S ,Mt, Create)

where:

• c is the name of the interface;
• ≤S⊆ {(c, s) | s ∈ SORTOb} is a partial order

specifying the subtype relation associated to
c;

• Mt ⊆ MMETH(c) is a finite set of encap-
sulated multi-methods of c.

• Create = (create, tcreate) is the set create
methods of c.

The set of all interfaces is denoted by INTF .

An implementation provides the realization of an
object type behavior, and it defines a set (or class)
of objects having the same internal structure
and behavior. The implementation module of an

object type is realized in the OOHLPN formalism
by using a class of Petri nets called Extended
High-Level Petri Net with Objects (EHLPNO),
which represent high level Petri nets enriched
with some object orientation concepts, such as
creating new objects inside transitions when they
fire, and calling public methods of objects inside
transitions:

• A send action is a syntactical construction
having the following form:

x.m(a1, . . . , an)

where m is the name of a method of the
object ob, a1, . . . , an ∈ TERM(O ∪ V ) are
expressions containing input variables of t,
and b is an output variable of t.

• A retrieve action is a syntactical construction
having the following form:

b ← x.m

• An instruction for creating objects can be
used:

〈variable〉 = new 〈impl〉(〈params〉)
where 〈variable〉 ∈ V arOut(t) − V arIn(t)
represents a variable associated to the newly
created object, 〈params〉 is a list of expres-
sions containing input variables of t, and
impl is the name of the implementation mod-
ule of the created object.

• An assignment action for t is a syntactical
construction having the following form:

v ← e

where v ∈ V arOut(t) is a variable having a
sort s ∈ SORTD, and e is an expression with
the same sort, e ∈ TERM(O ∪ V )s.

A general assignment action of the form

b ← x.m(a1, . . . , an)

must be divided in two actions associated with two
distinct transitions: a first transition containing
a send action, an intermediate place waiting for
the result, and a second transition containing a
retrieve action.

Definition 2.2. Let SG be a set of order-sorted
signatures, Sig ∈ SG a Boolean order-sorted
signature, Sig = (S,≤, O), H = (SH ,≤, OH)
an order-sorted Sig-algebra, IT a set of well-
defined interfaces, Intf ∈ IT an interface, Intf =
(c,≤S ,Mt, Create), defining the object type c. An
implementation module of the interface Intf is a
triple:

Impl = (sm, Ehlpno, Intf, Inh)

where:

(i) sm ∈ SORTImp is the name of the module;



(ii) Ehlpno is an Extended High-Level Petri Net
with Objects;

(iii) Inh ∈ SORTImp ∪ {undef} specify imple-
mentation inheritance relation of Impl.

To simplify notations, several functions will be
used:

• ImplSort(Impl) will denote the name of
Impl,

• Ehlpno(Impl) will denote the EHLPNO as-
sociated to Impl,

• Interface(Impl) will denote the interface
that Impl implements,

• Inherit(Impl) will denote the inherited im-
plementation module of Impl.

The definition of OOHLPN uses the notions of
subtype and inheritance hierarchy.

Definition 2.3. Let IT be a set of well-defined
interfaces, IM a set of well-defined modules that
implement interfaces from IT . An object-oriented
system associated to IT and IM is a triple:

OS = (IT, IM, Inst)

where Inst : IM → ℘(OID) is a func-
tion which associates a set of object identi-
fiers to each implementation module, such that
if Impli, Implj ∈ IM , Impli 6= Implj , then
Inst(Impli) ∩ Inst(Implj) = ∅.

The object identifier sets Inst(Impli), i = 1, . . . , n
are disjoint sets in the case of unrelated implemen-
tation, in order to prevent two instances of imple-
mentations to have the same object identifier.

Definition 2.4. Let OS = (IT, IM, Inst) be a
object-oriented system as in the above definition.
An Object Oriented High Level Petri Net associ-
ated to OS is a triple:

Oohlpn = (OS, Impl0, oid0)

where Impl0 ∈ IM is a root of the inheritance
hierarchy of the object-oriented system, called
the initial implementation module of Oohlpn,
and oid0 ∈ Inst(Impl0) is the object identifier
associated to the initial object of Oohlpn.

The initial implementation module Impl0 of an
OOHLPN represents the higher level of abstrac-
tion for a modelled system, and its initial object
is the unique instance of Impl0, which exists at
the beginning of the dynamic system evolution.

3. ENCAPSULATED MULTI-METHODS AND
MULTIPLE DISPATCHING

In the OOHLPN formalism, each instance of an
object type has an associated object identifier
which can be used in different net annotations.

Let Oohlpn = (OS, Impl0, oid0) be an OOHLPN,
associated to an object-oriented system, OS =
(IT, IM, Inst). The sets of object types and im-
plementation module names associated to OS are
denoted by ObjTypeOS and ImplSortOS respec-
tively. Let c be an object type of OS, such that
ObjType−1(c) ∈ IT . The set of all object iden-
tifiers of c is denoted by Oidc and it is defined
as:

Oidc =
⋃

Impl∈Interface−1(ObjType−1(c))

Inst(Impl)

The set of all object identifiers of OS is denoted
by OidOS and defined as:

OidOS =
⋃

c∈ObjTypeOS

Oidc

Because the sets of object identifiers Inst(Impl)
from an object-oriented system are disjoint, one
can define a function, denoted by CurrentImpl,
which returns for each object identifier its asso-
ciated implementation module. The restriction of
CurrentImpl to the set OidOS is bijective:

CurrentImpl : OidOS → IM,

CurrentImpl(oid) = Impl, oid ∈ Inst(Impl)

By using the function CurrentImpl, the object
type and the implementation module name asso-
ciated to an object identifier can be determined.

Using the above notation, the set of all reference
values associated to a reference type ĉ is defined
as the set:

Refc = Oidc

An action Ac(t) ∈ SEND∪RET allows objects to
communicate. In order to allow multiple dispatch-
ing, OOHLPN uses a run-time dispatching mecha-
nism, implemented also with Extended High Level
Petri Nets with Objects.

For an action Ac(t) ∈ SEND ∪ RET , the imple-
mentation module of the receiver object cannot be
known at compile-time. Because at compile-time
the name of the called method, and the name of
the object type are both known, the dispatcher
mechanism uses a dispatcher module for each ob-
ject type from the object type hierarchy of an
OOHLPN.

Let Intf = (c,≤S ,Mt, Create) be an interface
associated to the object type c, having k encapsu-
lated multi-methods:

Mt = {(m1, t1), . . . , (mk, tk)}



tr#m

ts#m

wait

〈sender, receiver, b〉

ob

##m

m##

Ehlpnom

b = x.m

〈self, x, par〉
〈a1, . . . , an〉

x

x

x

x

par
par

ts#p1

ts#t1

par = new Param(a1, . . . , an)

ts#p2

ts#p3

ts#t2

x.m(a1, . . . , an)

ts

tr

b

x

Fig. 1. A method call

The dispatcher module associated to Intf is de-
noted by DispIntf and it is a collection of distinct
Extended High Level Petri Nets with Objects,

DispIntf = {Ehlpnom1 , . . . , Ehlpnomk
}

where each net Ehlpnomi is associated to a multi-
method mi from Mt.

A method call involving two actions of the form
x.m(a1, . . . , an) and b = x.m, where x is a refer-
ence to the receiving object, is performed by using
the extended Petri net, Ehlpnom, associated to
the multi-method m from the dispatching module
corresponding to the object type of x. Figure 1
specify the semantics of a such method call from
an object ob, containing a sending transition de-
noted by ts, a waiting place denoted by wait, and
receiving transition denoted by tr. The dispatch-
ing sub-module, Ehlpnom, has an input place,
denoted by ##m, and an output place denoted
by m##.

The Petri net corresponding to the implementa-
tion module associated to the object ob is ex-
tended with the following elements:

• four places, ts#p1, ts#p2, ts#p3 and ts#m,
two transition, ts#t1, ts#t2, and seven cor-
responding arcs, used to send the input in-
formation for the multi-method m;

• one place, tr#m, and a corresponding arc,
used to receive the output information from
the multi-method m.

The transition ts#t1 is used to create an object
of the type Param, which is a list of parameters

containing the arguments a1, . . . , an of the called
method. The object type Param is used because
different branches of a multi-method, m, can have
different number and types of arguments, and its
unique input place, #m, requires an unitary treat-
ment of these arguments. The transition ts#t2 is
used to create the compound value 〈self, x, par〉
which is sent to the dispatching module. The
places ts#m and ##m are fused, and the current
Petri net containing the transition ts is in this way
connected to the Petri net Ehlpnom associated to
the multi-method m.

The place tr#m is used to receive from the
dispatching sub-module Ehlpnom the result of the
called method and the two additional references,
to the caller object and to the called object,
respectively. The places tr#p and m## are also
fused.

Let Intf = (c,≤S , Mt, Create) be an interface,
and (m, t) ∈ Mt one of its encapsulated multi-
methods. The EHLPNO of the dispatching sub-
module associated to the multi-method (m, t) is
presented in Figure 2. Its input and output places
are denoted by ##m and m## respectively.

The multiple dispatching mechanism performs
two actions:

• a traditional method lookup as in single
dispatching languages, in order to determine
(in presence of subtype polymorphism) the
correct object whose method is called;



〈send, rec, par〉

t0

m#

m##

Disp′

Impl

c

ti(c = self)

tk(imp = Impk)

##m

#m

##m

〈send, rec, par〉

Up

LocalObjType

c

tproc

m##m

Imp1

t1(imp = Imp1)
##m#1

imp

m##1#

##m#k

##m#0

Smin

Param

〈send, rec, par〉
m##k#

m##0#

Impk

〈send, rec, resk〉

〈send, rec, res1〉

〈send, rec, res0〉

m##

te(c 6= self)

j

〈send, rec, par, j〉

〈send, rec, par, j〉

c

Fig. 2. A dispatching sub-module associated to a multi-method

• a branch selection algorithm of multiple dis-
patching languages, based on the run-time
types of message arguments.

Let t = {ĉw1 → s1, . . . , ĉwn → sn} be the
type of the encapsulated multi-method (m, t), and
ĉw → s the function type of the actual arguments.
The best matching branch j is selected such that
(Bruce et al., 1996):

wj = min1≤i≤n{wi | w ≤ wi} (1)

The dispatching sub-module presented in Figure
2 implements these two actions as follows:

(a) The transition denoted by tproc, that repre-
sents in fact a sub-net (it is denoted in figure
as a transition for simplicity), determines
from the input information 〈send, rec, par〉
the following three elements:
· the appropriate object type of the re-

ceiver object (variable c), extracted from
the reference of the receiver object (vari-
able rec); this action is necessary in pres-
ence of subtype polymorphism;

· the name of the appropriate implemen-
tation module (variable imp) containing
the called method, extracted also from
the reference of the receiver object;

· the best matching branch (variable j)
determined as in Equation (1), extracted
from the variable par and from the type
of the encapsulated multi-method.

(b) The place ObjType and transitions ti and te
allow to determine if the current object type
of the receiver object is equal to the object
type of the interface containing the multi-
method.

(c) In the case when the object type of the
receiver object is the same as the object
type of the interface containing the multi-
method, the transitions t1, . . ., tk allow to
send to all implementation modules (denoted
by Imp1, . . ., Impk) the input informa-
tion of the dispatching sub-module (variables
send, rec and par), and in addition, the
best matching branch (variable j). The the
best matching branch is used in each imple-
mentation module in order to determine the
appropriate method, as presented in Figure
3. The pairs of places (##m#1,#m), . . .,
(##m#k, #m), and (m#,m##1#), . . .,
(m#, m##k#) are then fused.

(d) In the case when the object type of the
receiver object is different than the object
type of the current interface, the transition t0
allows to resend the input information to the
dispatching sub-modules (associated to the
same multi-method) of the parent interfaces.
In Figure 2 is represented for simplicity a
single dispatching sub-module, denoted by
Disp′. The pairs of places (##m#0, ##m)
and (m##,m##0#) are also fused.



tokj = kjmin

m#

〈send, rec, par, j〉

#m#1

#m

t1

tk

Param

par

m#1#

#m#k m#k#

ti

rec = self

j

j = 1

〈send, self, resk〉

〈send, self, res1〉
to1

Fig. 3. Implementation of an encapsulated multi-method

(e) The results from all implementation modules
and all dispatching sub-modules are collected
and stored in the output place m##.

The structure of an implementation of a encapsu-
lated multi-method with k branches is presented
in Figure 3, and it contains the following elements:

• the k subnets associated to the k branches;
the subnet corresponding to the ith branch
is represented between places #m#i and
m#i#;

• a dispatching mechanism, represented by
transitions ti, t1, . . ., tk, in order to select
the best matching branch;

• a collecting mechanism, represented by tran-
sitions to1, . . ., tok, which allow to collect the
results from each branch.

4. CONCLUSION

In this paper, we presented a new class of
Petri nets, called Object Oriented High Level
Petri Nets and the implementation of their en-
capsulated multi-methods and multiple dispatch-
ing. The OOHLPN formalism has been proposed
for the need to encapsulate the object-oriented
methodology into the Petri net formalism.

Comparing with other object-oriented Petri net
formalisms, OOHLPNs have two important fea-
tures:

• The OOHLPN formalism allows two dis-
tinct hierarchies, for subtyping and for in-
heritance, because inheritance and subtyping
are distinct notions;

• The OOHLPN formalism uses encapsulated
multi-methods instead of ordinary methods,
and it has also a multiple dispatching mech-
anism.

OOHLPNs have also a third important feature, a
garbage-collector mechanism, but its implementa-
tion is not presented in this paper.

REFERENCES

Baldassari, M. and G. Bruno (1988). An environ-
ment for object-oriented conceptual program-
ming based on prot nets. LNCS 340, 1–19.

Bastide, R., C. Sibertin-Blanc and P. Palanque
(1993). Cooperative objects: A concurrent,
petri-net based, object-oriented language. In:
Proc. of the IEEE International Conference
on Systems, Man and Cybernetics. pp. 286–
292.

Battiston, E., F. DeCindio and G. Mauri (1988).
Objsa nets: A class of high level nets hav-
ing objects as domain. Lecture Notes in Com-
puter Science 340, 20–43.

Biberstein, O., D. Buchs and N. Guelfi (2001).
Object-oriented nets with algebraic specifica-
tions: The co-opn/2 formalism. Lecture Notes
in Computer Science 2001, 70–127.

Bruce, K., L. Cardelli, G. Castagna, The Hop-
kins Objects Group, G. Leavens and B. Pierce
(1996). On binary methods. Theory and Prac-
tice of Object Systems l(3), 221–242.

Cook, W., W. Hill and P. Canning (1990). Inheri-
tance is not subtyping. In: Conference Record
of the 17th Annual ACM Symposium on Prin-
ciples of Programming Languages. pp. 125–
135.

Genrich, H.J. (1987). Predicate/transition nets.
Lecture Notes in Computer Science 254, 207–
247.

Jensen, K. (1992). Coloured petri nets. basic con-
cepts, analysis methods and practical use.
EATCS Monographs on Theoretical Com-
puter Science.

Lakos, C. A. (1994). Object petri nets, definition
and relationship to colored nets. Technical
Report TR94-3. University of Tasmania.

Reisig, W. (1991). Petri nets and algebraic specifi-
cations. Theoretical Computer Science 80, 1–
34.

Taivalsaari, A. (1996). On the notion of inheri-
tance. ACM Computing Surveys 28(3), 438–
479.


